Microarray based analyses of methanotroph community profiles

  • Levente Bodrossy (Autor)
  • Nancy Stralis-Pavese (Autor)
  • Bertrand Tankouo Sandjong (Autor)
  • Alexandra Weilharter (Autor)
  • Stefan Radajewski (Autor)
  • Jyotsna Vohra (Autor)
  • Murrell J. Colin (Autor)
  • Sessitsch, A. (Autor)

Aktivität: Vortrag ohne Tagungsband / VorlesungPräsentation auf einer wissenschaftlichen Konferenz / Workshop

Beschreibung

Methanotroph communities were analyzed at high throughput and resolution using a microbial diagnostic microarray targeting the particulate methane monooxygenase (pmoA) gene of methanotrophs and functionally related bacteria. Landfill sites are responsible for 6-12 % of global methane emission. Methanotrophs play a very important role in decreasing landfill site methane emissions. We investigated the methane oxidation capacity and methanotroph diversity in lysimeters simulating landfill sites with different plant vegetations. Methane oxidation rates were 35 g methane m-2 day-1 or higher for planted lysimeters and 18 g methane m-2 day-1 or less for bare soil controls. Best methane oxidation, as displayed by gas depth profiles, was found under a vegetation of grass and alfalfa. Members of the genera Methylocystis and Methylocaldum were found to be the dominant members in landfill site simulating lysimeters. Soil bacterial communities in biogas free control lysimeters, which were less abundant in methanotrophs, were dominated by Methylocaldum. Type Ia methanotrophs were found only in the top layers of bare soil lysimeters with relatively high oxygen and low methane concentrations. A competitive advantage of type II methanotrophs over type Ia was indicated under all plant covers investigated. Analysis of average and individual results from parallel samples was used to identify general trends and variations in methanotroph community structures in relation to depth, methane supply and plant cover. The applicability of the technology for the detection of environmental perturbations was proven by an erroneous result, where an unexpected community composition detected with the microarray indicated a potential gas leakage in the lysimeter being investigated
Zeitraum1 März 200431 März 2004
EreignistitelMinisymposium on Microbial Ecology
VeranstaltungstypSonstiges
BekanntheitsgradInternational

Research Field

  • Nicht definiert