A Bayesian Approach - Data Fusion for robust detection of Vandalism and Trespassing related events in the context of railway security

Michael Hubner (Vortragende:r), Kilian Wohlleben, Martin Litzenberger, Stephan Veigl, Andreas Opitz, Stefan Grebien,

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

In the domain of railway infrastructure, monitoring
and securing the operational stability of the operation remains a
significant problem. Vandalism, trespassing, sabotage and theft
are constant threats, endangering the safety and integrity of the
entire system. At the same time monitoring of these systems
is becoming harder and harder as the systems grow and the
amount of data produced by the surveillance equipment scales accordingly. Additionally, since specific sensor modalities can have weaknesses in detecting one kind of threat, it is often necessary to install different sensors to get a better understanding of situation. In this paper we present our fusion model based on
Probabilistic Occupancy Maps (POM) and Bayesian Inference for environmental mapping of critical events such as vandalism and trespassing in the vicinity of railway infrastructure. We show that this approach helps to increase accuracy, while simultaneously decreasing the amount of false alarms generated by a system.
OriginalspracheEnglisch
TitelProceedings of ISIF International Conference on Information Fusion (FUSION 2024)
Seiten1-7
Band27
ISBN (elektronisch)978-1-7377497-6-9
DOIs
PublikationsstatusVeröffentlicht - 15 Okt. 2024
Veranstaltung27th International Conference on Information Fusion - San Giobbe Economics Campus Fondamenta San Giobbe, Cannaregio 873, Venice, Italien
Dauer: 8 Juli 202411 Juli 2024
https://fusion2024.org/

Konferenz

Konferenz27th International Conference on Information Fusion
KurztitelFUSION 2024
Land/GebietItalien
StadtVenice
Zeitraum8/07/2411/07/24
Internetadresse

Research Field

  • Responsive Sensing & Analytics
  • Computer Vision

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Bayesian Approach - Data Fusion for robust detection of Vandalism and Trespassing related events in the context of railway security“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren