A Data-Driven Approach for Travel Time Prediction on Motorway Sections

Bernhard Heilmann, Hannes Koller, Johannes Asamer, Martin Reinthaler (Vortragende:r), Michael Aleksa, Simon Breuss, Gerald Richter

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

In the presented case study, travel times for passenger cars (PC) and heavy goods vehicles (HGV) were predicted with a data-driven, hybrid approach, using historical traffic data of the entire high-ranking Austrian road network. In case flow data were available, travel time was predicted with a Kernel predictor searching for similar speed-density patterns. In case of missing flow data, travel time was predicted with deviations from typical historical speed time series. The performed steps in pre-processing traffic data, the hybrid prediction method as well as the results for selected road sections are described and analysed.
OriginalspracheEnglisch
TitelProceedings 2014 International Conference on Connected Vehicles and Expo (ICCVE2014)
DOIs
PublikationsstatusVeröffentlicht - 2014
Veranstaltung2014 International Conference on Connected Vehicles and Expo (ICCVE 2014) -
Dauer: 3 Juli 20147 Nov. 2014

Konferenz

Konferenz2014 International Conference on Connected Vehicles and Expo (ICCVE 2014)
Zeitraum3/07/147/11/14

Research Field

  • Ehemaliges Research Field - Mobility Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Data-Driven Approach for Travel Time Prediction on Motorway Sections“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren