A Framework for Neurosymbolic Goal-Conditioned Continual Learning in Open World Environments

Pierrick Lorang, Shivam Goel, Yash Shukla, Patrik Zips, Matthias Scheutz

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

In dynamic open-world environments, agents continually face new challenges due to sudden and unpredictable novelties, hindering Task and Motion Planning (TAMP) in autonomous systems. We introduce a novel TAMP architecture that integrates symbolic planning with reinforcement learning to enable autonomous adaptation in such environments, operating without human guidance. Our approach employs symbolic goal representation within a goal-oriented learning framework, coupled with planner-guided goal identification, effectively managing abrupt changes where traditional reinforcement learning, re-planning, and hybrid methods fall short. Through sequential novelty injections in our experiments, we assess our method’s adaptability to continual learning scenarios. Extensive simulations conducted in a robotics domain corroborate the superiority of our approach, demonstrating faster convergence to higher performance compared to traditional methods. The success of our framework in navigating diverse novelty scenarios within a continuous domain underscores its potential for critical real-world applications.
OriginalspracheEnglisch
TitelProceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Seiten12070-12077
DOIs
PublikationsstatusVeröffentlicht - 25 Dez. 2024
Veranstaltung2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) - Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 14 Okt. 202418 Okt. 2024

Konferenz

Konferenz2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Land/GebietVereinigte Arabische Emirate
StadtAbu Dhabi
Zeitraum14/10/2418/10/24

Research Field

  • Complex Dynamical Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Framework for Neurosymbolic Goal-Conditioned Continual Learning in Open World Environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren