A Light-weight Deep Learning Model for Remote Sensing Image Classification

Lam Pham (Vortragende:r, eingeladen), Cam Le (Autor:in, eingeladen), Dat Ngo (Autor:in, eingeladen), Anh Nguyen (Autor:in, eingeladen), Jasmin Lampert (Autor:in, eingeladen), Alexander Schindler (Autor:in, eingeladen), Ian McLoughlin (Autor:in, eingeladen)

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

In this paper, we present a high-performance and light-weight deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the aerial scene of a remote sensing image. To this end, we first evaluate various benchmark convolutional neural network (CNN) architectures: MobileNet V1/V2, ResNet 50/151V2, InceptionV3/InceptionResNetV2, EfficientNet B0/B7, DenseNet 121/201, ConNeXt Tiny/Large. Then, the best performing models are selected to train a compact model in a teacher-student arrangement. The knowledge distillation from the teacher aims to achieve high performance with significantly reduced complexity. By conducting extensive experiments on the NWPU-RESISC45 benchmark, our proposed teacher and student models outper-forms the state-of-the-art systems, and has potential to be applied on a wide range of edge devices.
OriginalspracheEnglisch
Titel13th Int'l Symposium on Image and Signal Processing and Analysis (ISPA 2023)
Seitenumfang5
ISBN (elektronisch)979-8-3503-1536-3
DOIs
PublikationsstatusVeröffentlicht - Juli 2023
Veranstaltung2023 International Symposium on Image and Signal Processing and Analysis (ISPA) - Rome, Rome, Italien
Dauer: 18 Sept. 202319 Sept. 2023

Konferenz

Konferenz2023 International Symposium on Image and Signal Processing and Analysis (ISPA)
Land/GebietItalien
StadtRome
Zeitraum18/09/2319/09/23

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Light-weight Deep Learning Model for Remote Sensing Image Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren