A Re-trained Model Based On Multi-kernel Convolutional Neural Network for Acoustic Scene Classification

Tuan Nguyen, Dat Ngo, Lam Pham, Linh Tran, Trang Hoang

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

This paper proposes a deep learning framework applied for Acoustic Scene Classification (ASC), which identifies recording location. In general, we apply three types of spectrograms: Gammatone (GAM), log-Mel and Constant Q Transform (CQT) for front-end feature extraction. For back-end classification, we present a re-trained model with a multi-kernel CDNN-based architecture for the pre-trained process and a DNN-based network for the post-trained process. Our obtained results over DCASE 2016 dataset show a significant improvement, increasing by nearly 8% compared to DCASE baseline of 77.2%.
OriginalspracheEnglisch
TitelRIVF International Conference on Computing and Communication Technologies (RIVF) 2020
Seiten1-5
Seitenumfang5
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung2020 RIVF International Conference on Computing and Communication Technologies (RIVF) -
Dauer: 14 Okt. 202015 Okt. 2020

Konferenz

Konferenz2020 RIVF International Conference on Computing and Communication Technologies (RIVF)
Zeitraum14/10/2015/10/20

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Re-trained Model Based On Multi-kernel Convolutional Neural Network for Acoustic Scene Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren