Abstract
This paper proposes a deep learning framework applied for Acoustic Scene Classification (ASC), which identifies recording location. In general, we apply three types of spectrograms: Gammatone (GAM), log-Mel and Constant Q Transform (CQT) for front-end feature extraction. For back-end classification, we present a re-trained model with a multi-kernel CDNN-based architecture for the pre-trained process and a DNN-based network for the post-trained process. Our obtained results over DCASE 2016 dataset show a significant improvement, increasing by nearly 8% compared to DCASE baseline of 77.2%.
Originalsprache | Englisch |
---|---|
Titel | RIVF International Conference on Computing and Communication Technologies (RIVF) 2020 |
Seiten | 1-5 |
Seitenumfang | 5 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2020 |
Veranstaltung | 2020 RIVF International Conference on Computing and Communication Technologies (RIVF) - Dauer: 14 Okt. 2020 → 15 Okt. 2020 |
Konferenz
Konferenz | 2020 RIVF International Conference on Computing and Communication Technologies (RIVF) |
---|---|
Zeitraum | 14/10/20 → 15/10/20 |
Research Field
- Ehemaliges Research Field - Data Science