A System Design for Automated Tailoring of Behavior Change Recommendations Using Time-Series Clustering of Energy Consumption Data

Johann Schrammel (Vortragende:r), Lisa Diamond, Peter Fröhlich

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

In this paper we describe our approach to address the challenges of tailoring and personalizing behavior change recommendations based on energy consumption data collected through smart meters and energy monitoring tech-nologies. The approach uses time-series clustering techniques with dynamic time warping to group daily energy consumption curves into similar clusters, and then provides personalized recommendations for shifting energy behavior to each in-dividual based on their predicted consumption pattern, the day-ahead energy prices and the resulting savings opportunities. The paper presents the methodol-ogy and discusses the suitability of this approach for improving traditional energy feedback and demand response interventions, and provides an outlook on the possibilities of artificial intelligence methods to further improve the concept.
OriginalspracheEnglisch
TitelPersuasive 2023 Adjunct Proceedings
Untertitel18th International Conference on Persuasive Technology, Adjunct Proceedings co-located with PERSUASIVE 2023
Seitenumfang10
Band3474
PublikationsstatusVeröffentlicht - 4 Sept. 2023
Veranstaltung1st Persuasive AI Workshop: In conjunction with the 18th International Conference on Persuasive Technology 2023 - Eindhoven, Niederlande
Dauer: 19 Apr. 202319 Apr. 2023

Publikationsreihe

NameCEUR Workshop Proceedings
Band3474
ISSN (elektronisch)1613-0073

Workshop

Workshop1st Persuasive AI Workshop
KurztitelPAI 2023
Land/GebietNiederlande
StadtEindhoven
Zeitraum19/04/2319/04/23

Research Field

  • Ehemaliges Research Field - Capturing Experience

Schlagwörter

  • tailored energy feedback
  • time-series clustering
  • demand response recommendations

Fingerprint

Untersuchen Sie die Forschungsthemen von „A System Design for Automated Tailoring of Behavior Change Recommendations Using Time-Series Clustering of Energy Consumption Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren