A User and Entity Behavior Analytics Log Data Set for Anomaly Detection in Cloud Computing

Max Landauer (Vortragende:r), Florian Skopik, Georg Höld, Markus Wurzenberger

Publikation: Beitrag in Buch oder TagungsbandBuchkapitelBegutachtung

Abstract

Cyber criminals utilize compromised user accounts to gain access into otherwise protected systems without the need for technical exploits. User and Entity Behavior Analytics (UEBA) leverages anomaly detection techniques to recognize such intrusions by comparing user behavior patterns against profiles derived from historical log data. Unfortunately, hardly any real log data sets suitable for UEBA are publicly available, which prevents objective comparison and reproducibility of approaches. Synthetic data sets are only able to alleviate this problem to some extent, because simulations are unable to adequately induce the dynamic and unstable nature of real user behavior in generated log data. We therefore present a real system log data set from a cloud computing platform involving more than 5000 users and spanning over more than five years. To evaluate our data set for the scenario of account hijacking, we outline a method for attack injection and subsequently disclose the resulting manifestations with an adaptive anomaly detection mechanism.
OriginalspracheDeutsch
TitelProceedings of the 2022 IEEE International Conference on Big Data - 6th International Workshop on Big Data Analytics for Cyber Intelligence and Defense (BDA4CID 2022)
Seiten4285-4294
Seitenumfang10
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung6th International Workshop on Big Data Analytics for Cyber Intelligence and Defense (BDA4CID 2022) - Osaka, Japan
Dauer: 17 Dez. 202220 Dez. 2022

Publikationsreihe

Name2022 IEEE International Conference on Big Data (Big Data)

Konferenz

Konferenz6th International Workshop on Big Data Analytics for Cyber Intelligence and Defense (BDA4CID 2022)
Land/GebietJapan
StadtOsaka
Zeitraum17/12/2220/12/22

Research Field

  • Cyber Security

Diese Publikation zitieren