Acoustic Scene Classification Using A Deeper Training Method for Convolution Neural Network

Tan Doan, Hung Nguyen, Dat Ngo, Lam Pham, Kha Ha

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

In this paper, we present a deep learning framework applied for acoustic scene classification (ASC) recognizing the environmental sounds. Since an audio scene related to a given location potentially contains numerous sound events, only few of these events supply helpful information on the scene, which makes the acoustic scene classification task become a very complex problem. To confront this challenge, we suggest a novel architecture consisting of two basic processes. The front-end process approaches a spectrogram feature, using Gammatone filters. Regarding the back-end classification, we propose a novel convolutional neural network (CNN) architecture that enforces the network deeply learning middle convolutional layers. Our experiments conducted over DCASE2016 task 1A dataset offer the highest classification accuracy of 84.4% as compared to 72.5% of DCASE2016 baseline.
OriginalspracheEnglisch
TitelInternational Symposium on Electrical and Electronics Engineering (ISEE) 2019
Seiten63-67
ISBN (elektronisch)978-1-7281-5353-7
DOIs
PublikationsstatusVeröffentlicht - 2019
Veranstaltung2019 International Symposium on Electrical and Electronics Engineering (ISEE) -
Dauer: 10 Okt. 201912 Okt. 2019

Sonstiges

Sonstiges2019 International Symposium on Electrical and Electronics Engineering (ISEE)
Zeitraum10/10/1912/10/19

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Acoustic Scene Classification Using A Deeper Training Method for Convolution Neural Network“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren