Adaptive threshold algorithm for detecting EEG-interburst intervals in extremely preterm neonates

Johannes Mader, Manfred Hartmann, Anastasia Dressler, Lisa Oberdorfer, Zsofia Rona, Sarah Glatter, Christine Czaba-Hnizdo, Johannes Herta, Tilmann Kluge, Tobias Werther, Angelika Berger, Johannes Koren, Katrin Klebermass-Schrehof, Vito Giordano

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Objective. This study provides an adaptive threshold algorithm for burst detection in electroencephalograms (EEG) of preterm infantes and evaluates its performance using clinical real-world EEG data. Approach. We developed an adaptive threshold algorithm for burst detection in EEG recordings from preterm infants. To assess its applicability in the real-world, we tested the algorithm on a dataset of 30 clinical EEG recordings which were not preselected for good quality, to ensure a real-world scenario. Main results. Interrater agreement was substantial at a kappa of 0.73 (0.68-0.79 inter-quantile range). The performance of the algorithm showed a similar agreement with one clinical expert of 0.73 (0.67-0.76) and a sensitivity and specificity of 0.90 (0.82-0.94) and 0.95 (0.93-0.97), respectively. Significance. The adaptive threshold algorithm demonstrated robust performance in detecting burst patterns in clinical EEG data from preterm infants, highlighting its practical utility. The fine-tuned algorithm achieved similar performance to human raters. The algorithm proves to be a valuable tool for automated burst detection in the EEG of preterm infants.

OriginalspracheEnglisch
Aufsatznummer095017
Seitenumfang28
FachzeitschriftPhysiological Measurement
Volume45
Issue9
PublikationsstatusVeröffentlicht - 1 Okt. 2024

Research Field

  • Medical Signal Analysis

Fingerprint

Untersuchen Sie die Forschungsthemen von „Adaptive threshold algorithm for detecting EEG-interburst intervals in extremely preterm neonates“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren