AI in Energy

Aleksandr Zavodovski, Alemayehu Gebremehdin, Andrea Matta, Antonio Kung, Artur Krukowski, Asbjørn Hovstø, Avishek Mukherjee, Carolin Zachäus, Damir Filipovic, Eva Pongracz, Fabio Silva, Farid Hamzeh Aghdam, Flemming Svenn, Ghazal Etminan, Hannah Funk, Ioannis Soldatos, Léo Cornec, Mays AL-Naday, Mehdi Rasti, Natalie SamovichNicla Frigerio, Ondrej Cerny, Ovidiu Vermesan, Sergio Gusmeroli, Udayanto Dwi Atmojo, Valerio Frascolla, Vasileios Karagiannis

Publikation: Bücher und BerichteBericht

6 Downloads (Pure)

Abstract

The rapid integration of Artificial Intelligence (AI), 5G, and upcoming 6G technologies into the energy sector signifies a transformative and long-term transitional shift towards a more sustainable and efficient future enabled by myriads of digital technologies. This paper focuses on the potential and challenges of leveraging AI across various segments of the energy landscape and stakeholders, including generation, distribution, and consumption within smart grids. Through comprehensive and dynamically evolving digital infrastructures the advanced data analytics, real-time monitoring, and predictive modelling, AI enhances the flexibility, reliability, and efficiency of energy systems. The convergence of AI and 6G technologies is particularly critical in optimising the performance of renewable energy sources, rolling out smart grid solutions to ensure grid stability, and fostering a resilient energy ecosystem. Key insights from this paper highlight the rapidly evolving role of AI in driving energy innovations, addressing challenges and policy and standardisation aspects, the ethical and cybersecurity considerations that accompany the deployment of AI solutions and technologies. The system and digital technologies stakeholders are embracing the full potential of AI to create a cleaner, smarter, and more resilient energy.
OriginalspracheEnglisch
Seitenumfang70
PublikationsstatusVeröffentlicht - 2024

Research Field

  • Sustainable & Resilient Society

Fingerprint

Untersuchen Sie die Forschungsthemen von „AI in Energy“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren