An artificial intelligence-based EEG algorithm for detection of epileptiform EEG discharges: Validation against the diagnostic gold standard

Franz Fürbass, Mustafa Aykut Kural, Gerhard Gritsch, Manfred Hartmann, Tilmann Kluge, Sándor Beniczky

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Objective To validate an artificial intelligence-based computer algorithm for detection of epileptiform EEG discharges (EDs) and subsequent identification of patients with epilepsy. Methods We developed an algorithm for automatic detection of EDs, based on a novel deep learning method that requires a low amount of labeled EEG data for training. Detected EDs are automatically grouped into clusters, consisting of the same type of EDs, for rapid visual inspection. We validated the algorithm on an independent dataset of 100 patients with sharp transients in their EEG recordings (54 with epilepsy and 46 with non-epileptic paroxysmal events). The diagnostic gold standard was derived from the video-EEG recordings of the patients´ habitual events. Results The algorithm had a sensitivity of 89% for identifying EEGs with EDs recorded from patients with epilepsy, a specificity of 70%, and an overall accuracy of 80%. Conclusions Automated detection of EDs using an artificial intelligence-based computer algorithm had a high sensitivity. Human (expert) supervision is still necessary for confirming the clusters of detected EDs and for describing clinical correlations. Further studies on different patient populations will be needed to confirm our results. Significance The automated algorithm we describe here is a useful tool, assisting neurophysiologist in rapid assessment of EEG recordings.
OriginalspracheEnglisch
Seiten (von - bis)1174-1179
Seitenumfang6
FachzeitschriftClinical Neurophysiology
DOIs
PublikationsstatusVeröffentlicht - 2020

Research Field

  • Exploration of Digital Health

Schlagwörter

  • Automatic spike detectionM;Biomarker;Deep learning;EEG;Interictal epileptiform; discharges;Epilepsy

Fingerprint

Untersuchen Sie die Forschungsthemen von „An artificial intelligence-based EEG algorithm for detection of epileptiform EEG discharges: Validation against the diagnostic gold standard“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren