An Inception-Residual-based Architecture with Multi-objective Loss for Detecting Respiratory Anomalies

Dat Ngo (Vortragende:r, eingeladen), Lam Pham (Autor:in, eingeladen), Huy Phan (Autor:in, eingeladen), Minh Tran (Autor:in, eingeladen), Delaram Jarchi (Autor:in, eingeladen), Sefki Kolozali (Autor:in, eingeladen)

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

This paper presents a deep learning system applied for detecting anomalies from respiratory sound recordings. Initially, our system begins with audio feature extraction using Gammatone and Continuous Wavelet transformation. This step aims to transform the respiratory sound input into a two-dimensional spectrogram where both spectral and temporal features are presented. Then, our proposed system integrates Inception-residual-based backbone models combined with multi-head attention and multi-objective loss to classify respiratory anomalies. Instead of applying a simple concatenation approach by combining results from various spectrograms, we propose a linear combination, which has the ability to regulate equally the contribution of each individual spectrogram throughout the training process. To evaluate the performance, we conducted experiments over the benchmark dataset of SPRSound (The Open-Source SJTU Paediatric Respiratory Sound) proposed by the IEEE BioCAS 2022 challenge. As regards the Score computed by an average between the average score and harmonic score, our proposed system gained significant improvements of 9.7%, 15.8%, 17.8%, and 16.1% in Task 1–1, Task 1–2, Task 2–1, and Task 2–2, respectively, compared to the challenge baseline system. Notably, we achieved the Top-1 performance in Task 2–1 and Task 2–2 with the highest Score of 74.5% and 53.9%, respectively.
OriginalspracheEnglisch
TitelThe IEEE 25th International Workshop on Multimedia Signal Processing
Seitenumfang6
ISBN (elektronisch)979-8-3503-3893-5
DOIs
PublikationsstatusVeröffentlicht - Juli 2023
Veranstaltung2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP) - Poitiers, France, Poitiers, Frankreich
Dauer: 27 Sept. 202329 Sept. 2023

Konferenz

Konferenz2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP)
Land/GebietFrankreich
StadtPoitiers
Zeitraum27/09/2329/09/23

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „An Inception-Residual-based Architecture with Multi-objective Loss for Detecting Respiratory Anomalies“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren