Application of Monte Carlo Method for Probabilistic Robust Control Performance Assessment

Titel in Übersetzung: Application of Monte Carlo Method for Probabilistic Robust Control Performance Assessment

Markus Gurtner (Vortragende:r), Patrik Zips, Adrian Trachte, Andreas Kugi

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

When designing control loops for nonlinear systems, the selection of a suitable control strategy and the appropriate parametrization is a key challenge. If, in addition to the nominal control performance, the robustness with respect to parameter uncertainties has to be taken into account, this task becomes even more challenging and analytical approaches often get infeasible. Therefore, this paper shows the application of randomized algorithms to enable a statistical assessment of the closed-loop control performance. This approach provides probabilistic bounds for the worst-case behavior and is capable of quantifying the expected violation of given performance limits. Two use cases, namely a highway lane change scenario and an electro-hydraulic valve, are discussed to demonstrate the interpretation of these numerical analyses and how to use these results for choosing the preferable control strategy among two candidates.
Titel in ÜbersetzungApplication of Monte Carlo Method for Probabilistic Robust Control Performance Assessment
OriginalspracheEnglisch
TitelProceedings of the 6th International Conference on System Reliability and Safety (ICSRS)
Seiten163-168
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung6th International Conference on System Reliability and Safety: ICSRS - Venice, Italien
Dauer: 23 Nov. 202225 Nov. 2022

Konferenz

Konferenz6th International Conference on System Reliability and Safety
Land/GebietItalien
StadtVenice
Zeitraum23/11/2225/11/22

Research Field

  • Complex Dynamical Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „Application of Monte Carlo Method for Probabilistic Robust Control Performance Assessment“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren