Automatic AI-Supported Information Extraction in Natural Hazards Reconnaissance

Refiz Duro (Autor:in und Vortragende:r), Axel Weißenfeld, Medina Andresel, Veronika Siska, Drazen Ignjatovic, Christoph Singewald

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Hazardous events and corresponding responses require the exploitation of information from reports in various modes (text, image, video, audio) coming from responders, affected population and officials. In addition to the underlying need for automated processing of such reports and information, we explore the potential of implementing AI services for information extraction and knowledge management. We demonstrate that we can transfer the practices and technology from the military reconnaissance to civilian applications, while integrating the technological advances from the AI-based object detection and Large Language Models, and providing a simple way to automate the processing of multimodal data to generate intelligence to support decision making.
OriginalspracheEnglisch
Titel32th Interdisciplinary Information Management Talks - IDIMT 2024
UntertitelChanges to ICT, Management, and Business Processes through AI
Redakteure/-innenPetr Doucek, Michael Sonntag, Lea Nedomova
Seiten23-33
Band53
PublikationsstatusVeröffentlicht - 6 Sept. 2024
Veranstaltung32th Interdisciplinary Information Management Talks: Changes to ICT, Management, and Business Processes through AI - Hradec Králové, Tschechische Republik
Dauer: 4 Sept. 20246 Sept. 2024
https://idimt.org/

Konferenz

Konferenz32th Interdisciplinary Information Management Talks
KurztitelIDIMT 2024
Land/GebietTschechische Republik
StadtHradec Králové
Zeitraum4/09/246/09/24
Internetadresse

Research Field

  • Responsive Sensing & Analytics
  • Multimodal Analytics

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automatic AI-Supported Information Extraction in Natural Hazards Reconnaissance“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren