TY - JOUR
T1 - BoundPlanner: A Convex-Set-Based Approach to Bounded Manipulator Trajectory Planning
AU - Oelerich, Thies
AU - Hartl-Nesic, Christian
AU - Beck, Florian
AU - Kugi, Andreas
PY - 2025
Y1 - 2025
N2 - Online trajectory planning enables robot manipulators to react quickly to changing environments or tasks. Many robot trajectory planners exist for known environments but are often too slow for online computations.Current methods in online trajectory planning do not find suitable trajectories in challenging scenarios that respect the limits of the robot and account for collisions. This work proposes a trajectory planning framework consisting of the novel Cartesian path planner based on convex sets, called Bound-Planner, and the online trajectory planner BoundMPC [Oelerich, et al. (2025)]. BoundPlanner explores and maps the collision-free space using convex sets to compute a reference path with bounds. BoundMPC is extended in this work to handle convex sets for path deviations, which allows the robot to optimally follow the path within the bounds while accounting for the robot’s kinematics. Collisions of the robot’s kinematic chain are considered by a novel convex-set-based collision avoidance formulation independent on the number of obstacles. Simulations and experiments with a 7-DoF manipulator show the performance of the proposed planner compared to state-of-the-art methods.
AB - Online trajectory planning enables robot manipulators to react quickly to changing environments or tasks. Many robot trajectory planners exist for known environments but are often too slow for online computations.Current methods in online trajectory planning do not find suitable trajectories in challenging scenarios that respect the limits of the robot and account for collisions. This work proposes a trajectory planning framework consisting of the novel Cartesian path planner based on convex sets, called Bound-Planner, and the online trajectory planner BoundMPC [Oelerich, et al. (2025)]. BoundPlanner explores and maps the collision-free space using convex sets to compute a reference path with bounds. BoundMPC is extended in this work to handle convex sets for path deviations, which allows the robot to optimally follow the path within the bounds while accounting for the robot’s kinematics. Collisions of the robot’s kinematic chain are considered by a novel convex-set-based collision avoidance formulation independent on the number of obstacles. Simulations and experiments with a 7-DoF manipulator show the performance of the proposed planner compared to state-of-the-art methods.
KW - Constrained motion planning
KW - optimization and optimal control
KW - industrial robots
KW - model predictive trajectory planning
KW - convex sets
U2 - 10.1109/LRA.2025.3558450
DO - 10.1109/LRA.2025.3558450
M3 - Article
SN - 2377-3766
VL - 10
SP - 5393
EP - 5400
JO - IEEE Robotics and Automation Letters
JF - IEEE Robotics and Automation Letters
IS - 6
ER -