Building power demand forecasting using K-nearest neighbours model – practical application in Smart City Demo Aspern project

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Following the ongoing transformation of the European power system, in the future, it will be necessary to locally balance the increasing share of decentralised renewable energy supply. Therefore, a reliable short-term load forecast at the level of single buildings is required. In this study, we use a forecaster, which is based on K-nearest neighbours approach and was introduced in an earlier publication, on three buildings of Smart City Demo Aspern project. The authors demonstrate how this forecaster can be applied on different buildings without any manual setup or parametrisation, showing that it is viable to replace load-profiling solutions for predicting electricity consumption at the level of single buildings.
OriginalspracheEnglisch
FachzeitschriftCIRED - Open Access Proceedings Journal
DOIs
PublikationsstatusVeröffentlicht - Okt. 2017

Research Field

  • Power System Digitalisation

Fingerprint

Untersuchen Sie die Forschungsthemen von „Building power demand forecasting using K-nearest neighbours model – practical application in Smart City Demo Aspern project“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren