Clustering and cluster label prediction for daily electric consumption curves of residential users

Jan Kurzidim, Adam Buruzs, Milos Sipetic, Moritz Wagner

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in Tagungsband

Abstract

In this contribution, we used clustering methods to establish daily consumption patterns for residential electrical consumption data. We also implemented classification and regression methods to predict the daily consumption pattern of the next day. We applied three different criteria – clustering-, classifier-/regressor- and domain knowledge-based – to determine the best clustering method and number of clusters, analyzed in depth the properties of that clustering (particularly the daily consumption patterns), and found that regression performs better than classification in the label prediction task. The investigation was designed to yield insights that reduce the complexity of the residential electricity consumer market and that can be applied in demand response actions such as load shifting.
OriginalspracheEnglisch
TitelIntelligente Energie- und Klimastrategien
UntertitelEnergie – Gebäude – Umwelt
Redakteure/-innenHildegard Gremmel-Simon
ErscheinungsortWien
Seiten33-40
Seitenumfang8
ISBN (elektronisch)978-3-903207-89-9
DOIs
PublikationsstatusVeröffentlicht - Juni 2024
Veranstaltunge·nova: Intelligente Energie- und Klimastrategien - FH Burgenland, Pinkafeld, Österreich
Dauer: 12 Juni 202413 Juni 2024
https://www.fh-burgenland.at/bachelor-energie-und-umweltmanagement/enova/

Konferenz

Konferenze·nova
Kurztitele-nova 2024
Land/GebietÖsterreich
StadtPinkafeld
Zeitraum12/06/2413/06/24
Internetadresse

Research Field

  • Efficient Buildings and HVAC Technologies

Fingerprint

Untersuchen Sie die Forschungsthemen von „Clustering and cluster label prediction for daily electric consumption curves of residential users“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren