Abstract
In this contribution, we used clustering methods to establish daily consumption patterns for residential electrical consumption data. We also implemented classification and regression methods to predict the daily consumption pattern of the next day. We applied three different criteria – clustering-, classifier-/regressor- and domain knowledge-based – to determine the best clustering method and number of clusters, analyzed in depth the properties of that clustering (particularly the daily consumption patterns), and found that regression performs better than classification in the label prediction task. The investigation was designed to yield insights that reduce the complexity of the residential electricity consumer market and that can be applied in demand response actions such as load shifting.
Originalsprache | Englisch |
---|---|
Titel | Intelligente Energie- und Klimastrategien |
Untertitel | Energie – Gebäude – Umwelt |
Redakteure/-innen | Hildegard Gremmel-Simon |
Erscheinungsort | Wien |
Seiten | 33-40 |
Seitenumfang | 8 |
ISBN (elektronisch) | 978-3-903207-89-9 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juni 2024 |
Veranstaltung | e·nova: Intelligente Energie- und Klimastrategien - FH Burgenland, Pinkafeld, Österreich Dauer: 12 Juni 2024 → 13 Juni 2024 https://www.fh-burgenland.at/bachelor-energie-und-umweltmanagement/enova/ |
Konferenz
Konferenz | e·nova |
---|---|
Kurztitel | e-nova 2024 |
Land/Gebiet | Österreich |
Stadt | Pinkafeld |
Zeitraum | 12/06/24 → 13/06/24 |
Internetadresse |
Research Field
- Efficient Buildings and HVAC Technologies