TY - JOUR
T1 - Computerized simulation of 2-dimensional phase contrast images using spiral phase plates in neutron interferometry
AU - Treimer, Wolfgang
AU - Haußer, Frank
AU - Suda, Martin
PY - 2024/8/19
Y1 - 2024/8/19
N2 - We present calculations of interferograms (interference patterns) of one or multiple spiral phase plates that would be observed with a perfect crystal neutron interferometer of Mach–Zehnder type. A spiral phase plate (SPP) in one of the two coherent beam paths produces a twist in the phase front and thus a vortex beam with intrinsic angular momentum, which in the case of neutrons should be observed as a characteristic interference pattern that appears complementary to each other in both detectors behind the interferometer. Adding additional SPPs in one beam path of the interferometer yield interference patterns similar to that of a single SPP but only due to the cumulative step height. All simulated interferograms have been calculated on the basis of dynamical neutron diffraction without any assumption of a neutron orbital angular momentum and show very convincing agreement with experimental results from the literature, see e.g. (C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature, vol. 525, pp. 504–506, 2015). In particular, this clarifies, that the cited experiments do not give evidence of the quantization of interactions caused by a twist of the phase front of a neutron wave in the interferometer and thus no evidence for the effect of a neutron orbital angular momentum.
AB - We present calculations of interferograms (interference patterns) of one or multiple spiral phase plates that would be observed with a perfect crystal neutron interferometer of Mach–Zehnder type. A spiral phase plate (SPP) in one of the two coherent beam paths produces a twist in the phase front and thus a vortex beam with intrinsic angular momentum, which in the case of neutrons should be observed as a characteristic interference pattern that appears complementary to each other in both detectors behind the interferometer. Adding additional SPPs in one beam path of the interferometer yield interference patterns similar to that of a single SPP but only due to the cumulative step height. All simulated interferograms have been calculated on the basis of dynamical neutron diffraction without any assumption of a neutron orbital angular momentum and show very convincing agreement with experimental results from the literature, see e.g. (C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature, vol. 525, pp. 504–506, 2015). In particular, this clarifies, that the cited experiments do not give evidence of the quantization of interactions caused by a twist of the phase front of a neutron wave in the interferometer and thus no evidence for the effect of a neutron orbital angular momentum.
KW - Neutron optics
KW - Dynamical diffraction
KW - Neutron interferometry
KW - Neutron orbital angular momentum
U2 - 10.1515/zna-2024-0142
DO - 10.1515/zna-2024-0142
M3 - Article
SN - 0932-0784
VL - 79
SP - 873
EP - 880
JO - Zeitschrift für Naturforschung A
JF - Zeitschrift für Naturforschung A
IS - 9
ER -