Correlation of tyre/road noise measurements via machine learning algorithms

Bernhard Baumgartner, Andreas Fuchs, Manfred Haider (Vortragende:r)

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Tyre/road interaction is the main cause for noise emission
when considering road vehicles travelling faster than
approx. 60km/h. A multitude of aspects play a major
role regarding the overall observed sound pressure
level (SPL), i.e. speed, vehicle type, driving style and
pavement type/condition. The latter, however, facilitates
the possibility of independent tuning of acoustic
properties, e.g. via diamond grinding of concrete pavements
or open-graded asphalts. Investigations regarding
possible emission reductions are often performed using
trailers, wherein installed microphones record the rolling
noise close to the tyre/road contact. Another option is
the analysis of isolated, statistical pass-bys of cars and
trucks. This paper investigates the relationships between
different trailer-based measurement techniques according
to RVS 11.06.64 (RVS-method) and to ISO 11819-2
(CPX-method), as well as between the CPX-method and
the Pass-by-measurements following ISO 11819-2 (SPBmethod)
[1–3]. Comparisons and correlations of pavement
dependent overall SPL and analyses of respective
third-octave bands will be presented. This includes the
use of unsupervised machine learning algorithms allowing
the determination of relevant frequency bands of either
method.
OriginalspracheEnglisch
TitelProceedings of the Forum Acusticum 2023
ErscheinungsortTorino
Seitenumfang6
Auflage10
ISBN (elektronisch)978-88-88942-67-4
PublikationsstatusVeröffentlicht - 15 Sept. 2023
VeranstaltungForum Acusticum 2023 - Turin, Italien
Dauer: 11 Sept. 202315 Sept. 2023

Konferenz

KonferenzForum Acusticum 2023
Land/GebietItalien
StadtTurin
Zeitraum11/09/2315/09/23

Research Field

  • Reliable and Silent Transport Infrastructure

Schlagwörter

  • Lärm
  • Akustik
  • Straße

Fingerprint

Untersuchen Sie die Forschungsthemen von „Correlation of tyre/road noise measurements via machine learning algorithms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren