Deep Generative Replay for Multivariate Time-Series Monitoring with Variational Autoencoders

Gastón García González (Autor:in und Vortragende:r), Pedro Casas-Hernandez, Alicia Fernández

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Multivariate time-series (MTS) play a crucial role in network monitoring and analysis problems. We explore the usage of generative AI for MTS data modeling, in particular for the sake of knowledge replay. Knowledge replay mechanisms help in leveraging past experiences to enhance learning, mitigate forgetting, promote generalization, and enable the transfer of knowledge across different tasks or domains. Using a VAE-based deep architecture for data modeling, we incorporate a Deep Generative Replay (DGR) approach to transfer previously learned latent representations into future learning tasks, enabling continual learning in MTS problems. We study the generative characteristics of VAE-based models on top of a multi-dimensional network monitoring dataset collected from an operational mobile Internet Service Provider (ISP), portraying its usage in the context of DGR learning tasks.
OriginalspracheEnglisch
TitelProceedings of the 7th Network Traffic Measurement and Analysis Conference
Seiten1-4
Seitenumfang4
ISBN (elektronisch)978-3-903176-58-4
DOIs
PublikationsstatusVeröffentlicht - 7 Aug. 2023
Veranstaltung2023 7th Network Traffic Measurement and Analysis Conference (TMA) - Naples, Naples, Italien
Dauer: 26 Juni 202329 Juni 2023

Konferenz

Konferenz2023 7th Network Traffic Measurement and Analysis Conference (TMA)
Land/GebietItalien
StadtNaples
Zeitraum26/06/2329/06/23

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Generative Replay for Multivariate Time-Series Monitoring with Variational Autoencoders“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren