Deep Learning from Trajectory Data: a Review of Deep Neural Networks and the Trajectory Data Representations to Train Them

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Trajectory data combines the complexities of time series, spatial data, and (sometimes irrational) movement behavior. As data
availability and computing power have increased, so has the popularity of deep learning from trajectory data. This paper aims to provide an overview of deep neural networks designed to learn from trajectory data, focusing on recent work published between 2020 and 2022. We take a data-centric approach and distinguish between deep learning models trained using dense trajectories (quasi-continuous tracking data), sparse trajectories (such as check-in data), and aggregated trajectories (crowd
information).
OriginalspracheEnglisch
TitelCEUR Workshop Proceedings 2023
Redakteure/-innenGeorge Fletcher, Verena Kantere
Seitenumfang12
Band3379
PublikationsstatusVeröffentlicht - 2023
VeranstaltungBig Mobility Data Analytics BMDA 2023 - Ioannina, Griechenland
Dauer: 28 März 202328 März 2023

Konferenz

KonferenzBig Mobility Data Analytics BMDA 2023
Land/GebietGriechenland
StadtIoannina
Zeitraum28/03/2328/03/23

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Learning from Trajectory Data: a Review of Deep Neural Networks and the Trajectory Data Representations to Train Them“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren