DeepRIoT: Continuous Integration and Deployment of Robotic-IoT Applications

Meixun Qu, Jie He, Zlatan Tucakovic (Autor:in und Vortragende:r), Ezio Bartocci, Dejan Nickovic, Haris Isakovic, Radu Grosu

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

We present DeepRIoT, a continuous integration and continuous deployment (CI/CD) based architecture that accelerates the learning and deployment of a Robotic-IoT system trained from deep reinforcement learning (RL). We adopted a multi-stage approach that agilely trains a multi-objective RL controller in the simulator. We then collected traces from the real robot to optimize its plant model, and used transfer learning to adapt the controller to the updated model. We automated our framework through CI/CD pipelines, and finally, with low cost, succeeded in deploying our controller in a real F1tenth car that is able to reach the goal and avoid collision from a virtual car through mixed reality.
OriginalspracheEnglisch
TitelDAC '24: Proceedings of the 61st ACM/IEEE Design Automation Conference
Seiten1-6
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung61st ACM/IEEE Design Automation Conference, DAC 2024, San Francisco, CA, USA, June 23-27, 2024 - San Francisco, USA/Vereinigte Staaten
Dauer: 23 Juni 202427 Okt. 2024
https://www.dac.com/About/Conference-Archive/61st-DAC

Konferenz

Konferenz61st ACM/IEEE Design Automation Conference, DAC 2024, San Francisco, CA, USA, June 23-27, 2024
KurztitelDAC
Land/GebietUSA/Vereinigte Staaten
StadtSan Francisco
Zeitraum23/06/2427/10/24
Internetadresse

Research Field

  • Dependable Systems Engineering

Fingerprint

Untersuchen Sie die Forschungsthemen von „DeepRIoT: Continuous Integration and Deployment of Robotic-IoT Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren