Abstract
In this work, atom probe tomography technique is used to investigate how wire arc additive manufacturing (WAAM) changes the nanochemistry of nanoprecipitates and grain boundaries after peak aging of a high strength Al-Zn-Mg-Cu alloy. The effect of the change in nanochemistry of nanoprecipitates on the hydrogen embrittlement of the additively manufactured aluminum alloy is investigated using a three-point bending test in humid air. The results show that the unique in-process heat treatment during WAAM, offers the possibility to modify the nanochemistry of nanoprecipitates and improve the resistance to hydrogen embrittlement of the Al-Zn-Mg-Cu alloys in the peak aged state without sacrificing mechanical performance. Density functional theory shows that the WAAM process transforms the interfaces between matrix and precipitate into a strong hydrogen trap, which can reduce the hydrogen content of grain boundaries and suppress hydrogen-induced intergranular fracture.
Titel in Übersetzung | Entwicklung von wasserstoffversprödungsbeständigen 7xxx-T6-Aluminiumlegierungen auf der Grundlage der additiven Fertigung mit Drahtbogen: Veränderte Nanochemie der verfestigenden Ausscheidungen |
---|---|
Originalsprache | Englisch |
Seiten (von - bis) | 1-12 |
Seitenumfang | 12 |
Fachzeitschrift | Materials & Design |
Volume | 243 |
Issue | 113030 |
Publikationsstatus | Veröffentlicht - 23 Mai 2024 |
Research Field
- Wire-Based Additive Manufacturing
Schlagwörter
- Wire arc additive manufacturing
- Al-Zn-Mg-Cu
- Precipitation
- Solute segregation
- Hydrogen traps