TY - JOUR
T1 - Detection of breast cancer-related point-mutations using screen-printed and gold-plated electrochemical sensor arrays suitable for point-of-care applications
AU - Thöny, Vanessa
AU - Melnik, Eva
AU - Asadi, M.
AU - Mehrabi, P.
AU - Schalkhammer, T.
AU - Pulverer, Walter
AU - Maier, T.
AU - Mutinati, Giorgio Cataldo
AU - Lieberzeit, P.A.
AU - Hainberger, Rainer
PY - 2022
Y1 - 2022
N2 - For anticancer therapy and disease prognosis in breast cancer, three PIK3CA point-mutations (H1047R, E545K, and E542K) play a significant role. To allow for specific and sensitive detection of these point-mutations with a hybridization-based detection concept, the assay conditions were optimized on a microarray technology platform. The resulting fluorescence-based microarray assay enables simultaneous and specific detection of three PIK3CA point-mutations. The optimized protocol was then adapted for use on a screen-printed and gold-plated silver sensor array with twelve working electrodes, one common counter electrode, and one common reference electrode. Chronoamperometric measurements employing an enzyme-amplified electrochemical assay allow for detecting PIK3CA point-mutations with a detection limit of 10 pM for short 24-mer target DNA. The mutant and the wild-type target DNA sequences gave significantly different signals in a broad concentration range of 1 nM – 100 nM, with the best separation found at 10 nM – 20 nM. Comparing the hybridization of short 24-mer and long 80-mer target DNA sequences reveals that the hybridization efficiency is reduced for long target DNA sequences. However, both the 24-mer and the 80-mer target DNA lead to successful detection of point-mutations. Finally, the electrochemical sensor allows for multiplexed detection of the three PIK3CA point-mutations.
AB - For anticancer therapy and disease prognosis in breast cancer, three PIK3CA point-mutations (H1047R, E545K, and E542K) play a significant role. To allow for specific and sensitive detection of these point-mutations with a hybridization-based detection concept, the assay conditions were optimized on a microarray technology platform. The resulting fluorescence-based microarray assay enables simultaneous and specific detection of three PIK3CA point-mutations. The optimized protocol was then adapted for use on a screen-printed and gold-plated silver sensor array with twelve working electrodes, one common counter electrode, and one common reference electrode. Chronoamperometric measurements employing an enzyme-amplified electrochemical assay allow for detecting PIK3CA point-mutations with a detection limit of 10 pM for short 24-mer target DNA. The mutant and the wild-type target DNA sequences gave significantly different signals in a broad concentration range of 1 nM – 100 nM, with the best separation found at 10 nM – 20 nM. Comparing the hybridization of short 24-mer and long 80-mer target DNA sequences reveals that the hybridization efficiency is reduced for long target DNA sequences. However, both the 24-mer and the 80-mer target DNA lead to successful detection of point-mutations. Finally, the electrochemical sensor allows for multiplexed detection of the three PIK3CA point-mutations.
U2 - 10.1016/j.talo.2022.100150
DO - 10.1016/j.talo.2022.100150
M3 - Article
SN - 0039-9140
VL - 1
SP - 100150
JO - Talanta Open
JF - Talanta Open
IS - 1
ER -