TY - JOUR
T1 - Development of a specific troponin I detection system with enhanced immune sensitivity using a single monoclonal antibody
AU - Bozdogan, Anil
AU - El-Kased, Reham F.
AU - Jungbluth, Vanessa
AU - Knoll, Wolfgang
AU - Dostalek, Jakub
AU - Kasry, Amal
PY - 2020
Y1 - 2020
N2 - Using an immunoassay in combination with surface plasmon fluorescence spectroscopy (SPFS), we report the rapid detection of troponin I, a valuable biomarker for diagnosis of myocardial infarction. We discuss the implementation of (i) direct, (ii) sandwich, and (iii) competitive assay formats, based on surface plasmon resonance and SPFS. To elucidate the results, we relate the experiments to orientation-dependent interaction of troponin I epitopes with respective immunoglobulin G antibodies. A limit of detection (LoD) of 19 pM, with 45 min readout time, was achieved using single monoclonal antibody that is specific for one epitope. The borderline between normal people and patients is 20 pM to 83 pM cTnI concentration, and upon the outbreak of acute myocardial infraction it can raise to 2 nM and levels at 20 nM for 6-8 days, therefore the achieved LoD covers most of the clinically relevant range. In addition, this system allows for the detection of troponin I using a single specific monoclonal antibody, which is highly beneficial in case of detection in real samples, where the protein has a complex form leading to hidden epitopes, thus paving the way towards a system that can improve early-stage screening of heart attacks.
AB - Using an immunoassay in combination with surface plasmon fluorescence spectroscopy (SPFS), we report the rapid detection of troponin I, a valuable biomarker for diagnosis of myocardial infarction. We discuss the implementation of (i) direct, (ii) sandwich, and (iii) competitive assay formats, based on surface plasmon resonance and SPFS. To elucidate the results, we relate the experiments to orientation-dependent interaction of troponin I epitopes with respective immunoglobulin G antibodies. A limit of detection (LoD) of 19 pM, with 45 min readout time, was achieved using single monoclonal antibody that is specific for one epitope. The borderline between normal people and patients is 20 pM to 83 pM cTnI concentration, and upon the outbreak of acute myocardial infraction it can raise to 2 nM and levels at 20 nM for 6-8 days, therefore the achieved LoD covers most of the clinically relevant range. In addition, this system allows for the detection of troponin I using a single specific monoclonal antibody, which is highly beneficial in case of detection in real samples, where the protein has a complex form leading to hidden epitopes, thus paving the way towards a system that can improve early-stage screening of heart attacks.
U2 - 10.1098/rsos.200871
DO - 10.1098/rsos.200871
M3 - Article
SN - 2054-5703
VL - 7
JO - Royal Society Open Science
JF - Royal Society Open Science
IS - 10
ER -