DICOM® integrated EEG data: A first clinical implementation of the new DICOM standard for neurophysiology data

Clemens Lang, Silvia Winkler, Johannes Koren, Martin Huber, Tilmann Kluge, Christoph Baumgartner

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

OBJECTIVE: Demonstrating a pilot implementation of the Digital Imaging and Communication in Medicine (DICOM) neurophysiology standard published in 2020.

METHODS: An automated workflow for converting EEG data from a proprietary vendor EEG format to standardized and interoperable DICOM format was developed and tested.

RESULTS: Retrieval of proprietary EEG data, associated videos, annotations and metadata from the vendor EEG archive and their subsequent conversion to DICOM EEG was possible without changes to the departmental workflow. To transfer DICOM EEG data to the central radiology DICOM archive, only minor extensions in the parameterization of the archive's DICOM interfaces were necessary. Linkage with the electronic health record (EHR) and display in a DICOM EEG viewer could be demonstrated. A random sample of 88 DICOM EEG studies was compared to the original vendor files and EEG and video file sizes were comparable.

CONCLUSIONS: Storing and reviewing EEG data in standardized DICOM format is feasible, facilitated by existing DICOM infrastructure, and therefore allows for vendor independent access to EEG data.

SIGNIFICANCE: We report the first implementation of the DICOM neurophysiology standard, thus promoting standardization in the field of neurophysiology as well as data exchange and access to legacy recordings in an interoperable vendor independent format.

OriginalspracheEnglisch
Seiten (von - bis)107-112
Seitenumfang6
FachzeitschriftClinical Neurophysiology
Volume155
Frühes Online-Datum5 Aug. 2023
DOIs
PublikationsstatusVeröffentlicht - Nov. 2023

Research Field

  • Medical Signal Analysis

Fingerprint

Untersuchen Sie die Forschungsthemen von „DICOM® integrated EEG data: A first clinical implementation of the new DICOM standard for neurophysiology data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren