Does Random Forest outperform the Generalized Additive Model? An evaluation based on rainfall-triggered landslides in the Styrian Basin, Austria

Raphael Knevels (Vortragende:r), Philip Leopold (Vortragende:r), Herwig Proske, Zhihao Wang, Alexander Brenning

Publikation: Posterpräsentation ohne Beitrag in TagungsbandPosterpräsentation ohne Eintrag in TagungsbandBegutachtung

Abstract

Our objective was a comparison between Random Forest (RF, machine learning) and Generalized Additive Mo-del (GAM, conventional method) for landslide susceptibility modeling of rainfall-triggered landslides.
In the Styrian Basin more than 3,000 landslides occurred after heavy rainfall events in 2009 and 2014 causing significant da-mage to human infrastructure (Knevels et al., 2020).
The area affected during a 2009-type event could grow by up to 45% in a 4 K global warming scenario (Maraun et al., 2022; Knevels et al., 2023), making appropriate and robust landslide susceptibility predictions a necessary prerequisite for decision-makers.
OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 14 Nov. 2023
VeranstaltungWorld Landslide Forum 6: Landslide Science for Sustainable Development - Palazzo degli Affari & Palazzo dei Congressi, Florence, Italien
Dauer: 14 Nov. 202317 Nov. 2023
Konferenznummer: 6
https://wlf6.org/

Konferenz

KonferenzWorld Landslide Forum 6
KurztitelWLF6
Land/GebietItalien
StadtFlorence
Zeitraum14/11/2317/11/23
Internetadresse

Research Field

  • Road Infrastructure Assessment, Modelling and Safety Evaluation

Schlagwörter

  • landslide; climate change; precipitation; morphology; vulnerability; trigger function; hazard nomogram; observation bias

Fingerprint

Untersuchen Sie die Forschungsthemen von „Does Random Forest outperform the Generalized Additive Model? An evaluation based on rainfall-triggered landslides in the Styrian Basin, Austria“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren