Driver Capability Monitoring in Highly Automated Driving: from state to capability monitoring

Joel Goncalves, Cristina Olaverri-Monreal (Vortragende:r), Klaus Bengler

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

A collision probability estimator in the advent of an emergency Take Over Request (TOR) that considers the driver reaction time and the driver state is an essential tool for developing driver assistance systems for Highly Automated Driving (HAD). In this paper we present an architecture for capturing the driver state and behavior inside the vehicle. This system is then used to predict the collision probability in the situation where drivers resolve the TOR doing a keep lane maneuver (KLM) and brake to avoid the collision. Since this maneuver can be executed safely even under fast reactions, we use it as a reference to determine if is it safe for transferring the vehicle control to the driver.
OriginalspracheEnglisch
TitelProceedings - 2015 IEEE 18th International Conference on Intelligent Transportation Systems
Seiten2329-2334
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2015
Veranstaltung18th IEEE International Conference on Intelligent Transportation Systems -
Dauer: 15 Sept. 201518 Sept. 2015

Konferenz

Konferenz18th IEEE International Conference on Intelligent Transportation Systems
Zeitraum15/09/1518/09/15

Research Field

  • Ehemaliges Research Field - Technology Experience

Schlagwörter

  • Collision Prediction
  • Driver Monitoring System

Fingerprint

Untersuchen Sie die Forschungsthemen von „Driver Capability Monitoring in Highly Automated Driving: from state to capability monitoring“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren