Effect of Nursing Assessment on Predictive Delirium Models in Hospitalised Patients

Sai Veeranki (Vortragende:r), Dieter Hayn, Diether Kramer, Stefanie Jauk, Günter Schreier

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in Tagungsband

Abstract

Delirium is an acute neuropsychiatric syndrome which is common in elderly patients during their hospitalisation and is associated with an increased mortality and morbidity. Since delirium is a) often underdiagnosed and b) preventable if early signs are detected,igh expectations are set in delirium risk assessment during hospital admission. In our latest studies, we showed that delirium prediction using machine learning algorithms is possible based on the patients´ health history. The aim of this study is to compare the influence of nursing assessment data on prediction models with clinical and demographic data. We approached the problem by a) comparing the performance of predictive models including nursing data with models based on clinical and demographic data only and b) analysing the feature importance of all available features. From our results we concluded that nursing assessment data can improve the performance of delirium prediction models better than demographic, laboratory, diagnosis, procedures, and previous transfers´ data alone.
OriginalspracheEnglisch
TitelHealth Informatics Meets eHealth (Serie: Studies in Health Technology and Informatics)
Redakteure/-innenGünter Schreier, Dieter Hayn
Herausgeber (Verlag)IOS Press
Seiten124-131
Seitenumfang8
DOIs
PublikationsstatusVeröffentlicht - 2018
VeranstaltungeHealth 2018 - "Health informatics meets eHealth" Konferenz -
Dauer: 8 Mai 20189 Mai 2018

Konferenz

KonferenzeHealth 2018 - "Health informatics meets eHealth" Konferenz
Zeitraum8/05/189/05/18

Research Field

  • Exploration of Digital Health

Schlagwörter

  • Delirium
  • Predictive Analytics
  • Nursing Assessment

Fingerprint

Untersuchen Sie die Forschungsthemen von „Effect of Nursing Assessment on Predictive Delirium Models in Hospitalised Patients“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren