Enhancing Satisfied User Ratio (SUR) Prediction for VMAF Proxy through Video Quality Metrics

Jingwen Zhu, H. Amirpour, Raimund Schatz, Christian Timmerer, Patrick Le Callet

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

In adaptive video streaming, optimizing the selection of representations for the encoding bitrate ladder has a significant impact on the quality and economics of media delivery. An efficient way to select representations for the bitrate ladder of a given clip is to consider the Satisfied User Ratio (SUR) of the perceived quality of consecutive representations. This ensures that only representations with one Just Noticeable Difference (JND) are encoded and streamed by avoiding encoding similar-quality representation. VMAF (Video Multi-method Assessment Fusion) presently stands as the most commonly utilized quality metric for constructing bitrate ladders. Hence, the precise determination of JND-optimal encoding step-sizes for the VMAF proxy holds paramount importance; nevertheless, this task is intricate and can present considerable challenges. In this paper, we evaluate the effectiveness of different Video Quality Metrics (VQM) in predicting SUR for the VMAF proxy to better capture content-specific characteristics. Our experi- mental results provide evidence that incorporating VQM can improve the precision of the SUR prediction for the VMAF proxy. Compared to a state-of-the-art approach that utilizes video complexity metrics, our proposed approach, which incorporates two quality metrics—specifically, VMAF and SSIM calculated at an optimized quantization parameter (QP)—achieves a substantially reduced Mean Absolute Error (MAE) of 1.67. In contrast, the state-of-the-art approach yields an MAE of 2.01. Hence, we recommend using the above quality metrics to improve the accuracy of SUR prediction for the VMAF proxy.
OriginalspracheEnglisch
Titel2023 IEEE International Conference on Visual Communications and Image Processing (VCIP)
Seitenumfang5
ISBN (elektronisch)979-8-3503-5985-5
DOIs
PublikationsstatusVeröffentlicht - 29 Jan. 2024
VeranstaltungVCIP 2023: IEEE International Conference on Visual Communications and Image Processing - Jeju, Südkorea
Dauer: 4 Dez. 20237 Dez. 2023
http://vcip2023.org/

Konferenz

KonferenzVCIP 2023: IEEE International Conference on Visual Communications and Image Processing
KurztitelIEEE VCIP2023
Land/GebietSüdkorea
StadtJeju
Zeitraum4/12/237/12/23
Internetadresse

Research Field

  • Ehemaliges Research Field - Experience Measurement

Fingerprint

Untersuchen Sie die Forschungsthemen von „Enhancing Satisfied User Ratio (SUR) Prediction for VMAF Proxy through Video Quality Metrics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren