Evaluation of Clustering Methods for Finding Dominant Optical Flow Fields in Crowded Scenes

Günther Eibl, Norbert Brändle (Vortragende:r)

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Video footage of real crowded scenes still poses severe challenges for automated surveillance. This paper evaluates clustering methods for finding independent dominant motion fields for an observation period based on a recently published real-time optical flow algorithm. We focus on self-tuning spectral clustering and Isomap combined with k-means. Several combinations of feature vector normalizations and distance measures (Euclidean, Mahanalobis and a general additive distance) are evaluated for four image sequences including three publicly available crowd datasets. Evaluation is based on mean accuracy obtained by comparison with a manually defined ground truth clustering. For every dataset at least one approach correctly classified more than 95% of the flow vectors without extra tuning of parameters, providing a basis for an automatic analysis after a view-dependent setup.
OriginalspracheEnglisch
TitelProceedings of the 19th International Conference on Pattern Recognition 2008 (ICPR 2008)
DOIs
PublikationsstatusVeröffentlicht - 2008
Veranstaltung19th International Conference on Pattern Recognition - ICPR 2008 -
Dauer: 8 Dez. 200811 Dez. 2008

Konferenz

Konferenz19th International Conference on Pattern Recognition - ICPR 2008
Zeitraum8/12/0811/12/08

Research Field

  • Ehemaliges Research Field - Mobility Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evaluation of Clustering Methods for Finding Dominant Optical Flow Fields in Crowded Scenes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren