Exploring the Impact of Data Quality and Availability on PV Power Plant Yield Prediction Using Machine Learning and Analytical Models

Alexander Prüller, Marcus Rennhofer (Vortragende:r), Bernhard Kubicek, Martin Gröschl

Publikation: Posterpräsentation ohne Beitrag in TagungsbandPosterpräsentation ohne Eintrag in Tagungsband

Abstract

While using machine learning models for predictions of PV yield
is increasing in popularity, attention and awareness of the used
training data is becoming essential. This study investigates the
robustness of photovoltaic (PV) power plant yield predictions
under diverse data scenarios
OriginalspracheEnglisch
PublikationsstatusAngenommen/Im Druck - 25 Sept. 2024

Research Field

  • Hybrid Power Plants

Schlagwörter

  • Photovoltaics
  • Machine Learning
  • Yield
  • Forecast
  • sparse data

Diese Publikation zitieren