Fast approximate hubness reduction for large high-dimensional data

Roman Feldbauer (Vortragende:r), Maximilian Leodolter, Claudia Plant, Arthur Flexer

    Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

    Abstract

    High-dimensional data mining is challenging due to the "curse of dimensionality". Hubness reduction counters one particular aspect of the dimensionality curse, but suffers from quadratic algorithmic complexity. We present approximate hubness reduction methods with linear complexity in time and space, thus enabling hubness reduction for large data for the first time. Furthermore, we introduce a new hubness measure especially suited for large data, which is, in addition, readily interpretable. Experiments on synthetic and real-world data show that the approximations come at virtually no cost in accuracy in comparison with full hubness reduction. Finally, we demonstrate improved transport mode detection in massive mobility data collected with mobile devices as concrete research application. All methods are made publicly available in a free open source software package.
    OriginalspracheEnglisch
    TitelProceedings 2018 IEEE International Conference on Big Knowledge (ICBK)
    DOIs
    PublikationsstatusVeröffentlicht - 2018
    Veranstaltung2018 IEEE International Conference on Big Knowledge (ICBK) -
    Dauer: 17 Nov. 201818 Nov. 2018

    Konferenz

    Konferenz2018 IEEE International Conference on Big Knowledge (ICBK)
    Zeitraum17/11/1818/11/18

    Research Field

    • Ehemaliges Research Field - Mobility Systems

    Fingerprint

    Untersuchen Sie die Forschungsthemen von „Fast approximate hubness reduction for large high-dimensional data“. Zusammen bilden sie einen einzigartigen Fingerprint.

    Diese Publikation zitieren