Federated Learning for Anomaly Detection in Maritime Movement Data

Anita Graser (Autor:in und Vortragende:r), Axel Weißenfeld, Clemens Heistracher, Melitta Dragaschnig, Peter Widhalm

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

This paper introduces M3fed, a novel solution for federated learning of movement anomaly detection models. This innovation has the potential to improve data privacy and reduce communication costs in machine learning for movement anomaly detection. We present the novel federated learning (FL) strategies employed to train M3fed, perform an example experiment with maritime AIS data, and evaluate the results with respect to communication costs and FL model quality by comparing classic centralized M3 and the new federated M3fed.
OriginalspracheEnglisch
TitelProceedings of MDM 2024
Seiten77-82
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung25th IEEE International Conference on Mobile Data Management - Brussels, Belgien
Dauer: 24 Juni 202427 Juni 2024
https://mdm2024.github.io/

Konferenz

Konferenz25th IEEE International Conference on Mobile Data Management
KurztitelMDM 2024
Land/GebietBelgien
StadtBrussels
Zeitraum24/06/2427/06/24
Internetadresse

Research Field

  • Multimodal Analytics
  • Transport Optimisation and Energy Logistics

Fingerprint

Untersuchen Sie die Forschungsthemen von „Federated Learning for Anomaly Detection in Maritime Movement Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren