Feedback Loop Optimization for a Distillation System by applying C-Code Controllers with Dymola

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in Tagungsband


The process engineering domain covers a large field of different disciplines such as thermodynamics, electrical engineering or chemistry. On one hand just the knowledge about these different disciplines to approach and develop standalone-solutions is a big challenge where on the other hand the configuration and the control of the system routines are crucial steps. Nowadays most applications in process engineering are automated and digital signal processors (DSP) are widely used to implement control modules for different automatic control systems in an efficient and flexible way. Nevertheless, without dynamically applicable and real-time capable models it seems nearly impossible to estimate real operating conditions (e.g. controller parameter settings) in process engineering according to real requirements. This paper presents the simulation model of a thermal control circuit for determining the distillation properties of petrochemical end products modeled in Modelica and performed by using the simulation tool Dymola. This simulation environment improves the design of interdisciplinary models and allows the optimization of the entire feedback loop.
TitelProceedings of the 7th International Modelica Conference
PublikationsstatusVeröffentlicht - 2009
Veranstaltung7th International Modelica Conference (Modelica 2009) -
Dauer: 20 Sept. 200922 Sept. 2009


Konferenz7th International Modelica Conference (Modelica 2009)

Research Field

  • Ehemaliges Research Field - Low Emission Transport


  • process engineering
  • automatic control
  • systems
  • simulation
  • interdisciplinary models
  • optimization


Untersuchen Sie die Forschungsthemen von „Feedback Loop Optimization for a Distillation System by applying C-Code Controllers with Dymola“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren