Finding Highly Frequented Paths in Video Sequences

Dietmar Bauer, Norbert Brändle, Stefan Seer, Roman Pflugfelder

Publikation: Beitrag in Buch oder TagungsbandBeitrag in Tagungsband mit PosterpräsentationBegutachtung

Abstract

We propose a novel algorithm to find highly frequented paths of motion trajectories obtained from video sequences. This is achieved by representing the motion trajectories in the scene as sequences of prototypes obtained by a combined vector quantization and growing neural gas algorithm. In contrast to existing methods, the proposed algorithm can be applied to data sets containing motion trajectories of varying length. The algorithm does not assume an a priori fixed number of prototypes. We demonstrate results on surveillance video sequences of cars driving on a highway and pedestrians walking in a major railway station.
OriginalspracheEnglisch
TitelProceedings 18th International Conference on Pattern Recognition (ICPR 2006)
DOIs
PublikationsstatusVeröffentlicht - 2006
Veranstaltung18th International Conference on Pattern Recognition (ICPR 2006) -
Dauer: 1 Jan. 2006 → …

Konferenz

Konferenz18th International Conference on Pattern Recognition (ICPR 2006)
Zeitraum1/01/06 → …

Research Field

  • Ehemaliges Research Field - Mobility Systems
  • Ehemaliges Research Field - Digital Safety and Security

Fingerprint

Untersuchen Sie die Forschungsthemen von „Finding Highly Frequented Paths in Video Sequences“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren