Fine-tuning of pre-processing filters enables scalp-EEG based training of subcutaneous EEG models

Publikation: Beitrag in Buch oder TagungsbandBeitrag in Tagungsband mit PosterpräsentationBegutachtung

Abstract

The increasing availability of minimally invasive electroencephalogram (EEG) devices for ultra-long-term recordings has opened new possibilities for advanced EEG analysis, but the resulting large amount of generated data leads to a strong need for computational analyses. Deep neural networks (DNNs) have shown to be powerful for this purpose, but the lack of annotated data from these novel devices is a barrier to DNN training. We propose a novel technique based on fine-tuning of linear pre-processing filters, which is capable of compensating for variations in electrode positions and amplifier characteristics and enables training of models for subcutaneous EEG on largely available scalp EEG data. The effectiveness of the method is demonstrated on a state-of-the-art EEG-based sleep scoring model, where we show that the performance on a database used for training can be retained on the subcutaneous EEG by fine-tuning on data from only three subjects.
OriginalspracheEnglisch
Titel2023 IEEE 19th International Conference on Body Sensor Networks (BSN)
UntertitelConference Proceedings
ErscheinungsortBoston, Massachusetts, USA
KapitelMonday, October 9, 2023
Seiten1-4
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 9 Okt. 2023
VeranstaltungIEEE-EMBS International Conference on Body Sensor Networks – Sensor and Systems for Digital Health: Sensors and Systems for Digital Health. - MIT Media Lab, Boston, Cambridge, USA/Vereinigte Staaten
Dauer: 9 Okt. 202311 Okt. 2023
https://bsn.embs.org/2023/

Publikationsreihe

NameInternational Workshop on Wearable and Implantable Body Sensor Networks (BSN)
Herausgeber (Verlag)IEEE
Band15

Konferenz

KonferenzIEEE-EMBS International Conference on Body Sensor Networks – Sensor and Systems for Digital Health
KurztitelIEEE BSN 2023
Land/GebietUSA/Vereinigte Staaten
StadtBoston, Cambridge
Zeitraum9/10/2311/10/23
Internetadresse

Research Field

  • Medical Signal Analysis

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fine-tuning of pre-processing filters enables scalp-EEG based training of subcutaneous EEG models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren