FUELING GLOCAL: OPTIMIZATION-BASED PATH PLANNING FOR INDOOR UAVS IN AN AUTONOMOUS EXPLORATION FRAMEWORK

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Abstract. Exploration is a fundamental problem in robotics that requires robots to navigate through unknown environments to autonomously gather information about their surroundings while executing collision-free paths. In this paper, we propose a method for producing smooth paths during the exploration process in indoor environments using UAVs to improve battery efficiency and enhance the quality of pose estimation. The developed framework is built by merging two approaches that represent the state of the art in the field of autonomous exploration with UAVs. The overall exploration logic is given by GLocal, a paper that introduces an hybrid, i.e. both sampling-based and frontier-based, framework that is able to cope with the issue of odometry drift when exploring indoor environments due to the absence of absolute localization, e.g. through GNSS. The second paper is FUEL, which introduces a frontier-based exploration methodology which computes the drone’s path as an optimized non-uniform B-Spline. The framework described in this paper borrows the optimized B-Spline trajectory generation from FUEL and implements it in GLocal. The presented system is evaluated in two different simulated environments, which show the pros and the cons of such method.
OriginalspracheEnglisch
TitelThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Redakteure/-innenA. Guarnieri, A. Masiero, F. Pirotti, A. Vettore
Seiten85-91
Seitenumfang7
BandXLVIII-1/W1-2023
DOIs
PublikationsstatusVeröffentlicht - 25 Mai 2023
Veranstaltung12th International Symposium on Mobile Mapping Technology (MMT 2023) - Padua, Italien
Dauer: 24 Mai 202326 Mai 2023

Konferenz

Konferenz12th International Symposium on Mobile Mapping Technology (MMT 2023)
KurztitelMMT 2023
Land/GebietItalien
StadtPadua
Zeitraum24/05/2326/05/23

Research Field

  • Assistive and Autonomous Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „FUELING GLOCAL: OPTIMIZATION-BASED PATH PLANNING FOR INDOOR UAVS IN AN AUTONOMOUS EXPLORATION FRAMEWORK“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren