## Abstract

This article is an overview of recent progress on a theory of games, whose payoffs are

probability distributions rather than real numbers, and which have their equilibria defined and computed over a (suitably restricted yet dense) set of distributions. While the classical method of defining game models with real-valued utility functions has proven strikingly successful in many domains, some use cases from the security area revealed shortcomings of the classical real-valued game models. These issues motivated the use of probability distributions as a more complex object to express revenues. The resulting class of games displays a variety of phenomena not encountered in classical games, such as games that have continuous payoff functions but still no equilibrium, or games that are zero-sum but for which fictitious play does not converge. We discuss suitable restrictions of how such games should be defined to allow the definition of equilibria, and show the notion of a lexicographic Nash equilibrium, as a proposed solution concept in this generalized class

of games.

probability distributions rather than real numbers, and which have their equilibria defined and computed over a (suitably restricted yet dense) set of distributions. While the classical method of defining game models with real-valued utility functions has proven strikingly successful in many domains, some use cases from the security area revealed shortcomings of the classical real-valued game models. These issues motivated the use of probability distributions as a more complex object to express revenues. The resulting class of games displays a variety of phenomena not encountered in classical games, such as games that have continuous payoff functions but still no equilibrium, or games that are zero-sum but for which fictitious play does not converge. We discuss suitable restrictions of how such games should be defined to allow the definition of equilibria, and show the notion of a lexicographic Nash equilibrium, as a proposed solution concept in this generalized class

of games.

Originalsprache | Englisch |
---|---|

Seiten (von - bis) | 1-26 |

Seitenumfang | 26 |

Fachzeitschrift | Games |

Volume | 13 |

Publikationsstatus | Veröffentlicht - 2022 |

## Research Field

- Dependable Systems Engineering