GRAPHSEC – Advancing the Application of AI/ML to Network Security through Graph Neural Networks

Pedro Casas-Hernandez (Autor:in und Vortragende:r), Juan Vanerio, Johanna Ullrich, Mislav Findrik, Pere Barlet-Ros

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

The application of Artificial Intelligence (AI) and Machine Learning (ML) to network security (AI4SEC) is paramount against cybercrime. While AI/ML is today mainstream in domains such as computer vision and speech recognition, it has produced below-par results in AI4SEC. Solutions do not properly generalize, are ineffective in real deployments, and are vulnerable to adversarial attacks. A fundamental limitation is the lack of AI/ML technology specific to network security. Network security data is intrinsically relational, and graph-structured data representations and Graph Neural Networks (GNNs) have the potential to drastically advance the AI4SEC domain. In this positioning paper we propose GRAPHSEC, a research agenda to systematically integrate GNNs in AI4SEC. We structure the state of the art in AI4SEC and on the application of GNNs to network security applications, elaborate on the benefits and challenges faced by GRAPHSEC, and propose a research agenda to advance the AI4SEC domain through GNNs.
OriginalspracheEnglisch
TitelMLN 2022: Machine Learning for Networking.
Redakteure/-innenÉric Renault, Paul Mühlethaler
Seiten56-71
Band13767
ISBN (elektronisch)978-3-031-36183-8
DOIs
PublikationsstatusVeröffentlicht - 7 Juli 2023
Veranstaltung5th International Conference on Machine Learning for Networking, MLN 2022 -
Dauer: 28 Nov. 202230 Nov. 2022

Konferenz

Konferenz5th International Conference on Machine Learning for Networking, MLN 2022
Zeitraum28/11/2230/11/22

Research Field

  • Ehemaliges Research Field - Data Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „GRAPHSEC – Advancing the Application of AI/ML to Network Security through Graph Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren