HabiCrowd: A High Performance Simulator for Crowd-Aware Visual Navigation

An Vuong, Toan Nguyen, Minh Nhat Vu, Baoru Huang, H. T. T. Binh, Thieu Vo, Anh Nguyen

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Visual navigation, a foundational aspect of Embodied AI (E-AI) and robotics has been extensively studied in the past few years. While many 3D simulators have been introduced for the visual navigation tasks, scarcely works have combined human dynamics, creating the gap between simulation and real-world applications. Furthermore, current 3D simulators incorporating human dynamics have several limitations, particularly in terms of computational efficiency, which is a promise of modern simulators. To overcome these issues, we introduce HabiCrowd, the new standard benchmark for crowd-aware visual navigation that includes a crowd dynamics model with diverse human settings into photorealistic environments. Empirical evaluations demonstrate that our proposed human dynamics model achieves state-of-the-art performance in collision avoidance while exhibiting superior computational efficiency compared to its counterparts. We leverage HabiCrowd to conduct several comprehensive studies on crowd-aware visual navigation tasks and human-robot interactions. The source code and data can be found at https://habicrowd.github.io/.
OriginalspracheEnglisch
TitelProceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Seiten5821-5827
DOIs
PublikationsstatusVeröffentlicht - 25 Dez. 2024
Veranstaltung2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) - Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 14 Okt. 202418 Okt. 2024

Konferenz

Konferenz2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Land/GebietVereinigte Arabische Emirate
StadtAbu Dhabi
Zeitraum14/10/2418/10/24

Research Field

  • Complex Dynamical Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „HabiCrowd: A High Performance Simulator for Crowd-Aware Visual Navigation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren