HALIDS: a Hardware-Assisted Machine Learning IDS for in-Network Monitoring

Belén Brandino, Eduardo Grampin, Katharina Dietz, Nikolas Wehner, Michael Seufert, Tobias Hoßfeld, Pedro Casas-Hernandez (Autor:in und Vortragende:r)

Publikation: Beitrag in Buch oder TagungsbandBeitrag in Tagungsband mit PosterpräsentationBegutachtung

Abstract

Early decision-making at the network device level is crucial for network security. This entails moving beyond traditional forwarding functions towards more intelligent network devices. Integrating Machine Learning (ML) models into the data plane enables quicker processing and reduced reliance on the control plane. This paper explores the development of a ML-driven Intrusion Detection System (IDS) where network devices autonomously make security decisions or defer to an expert Oracle, relying on in-band and off-band traffic analysis. Programmable devices, such as those using P4, are essential to enable these functionalities and allow for network device re-training to adapt to changing traffic patterns. We introduce HALIDS, a prototype for in-band ML-IDS using P4, complemented with off-band Oracles which support in-network ML-driven classification with more confident classifications, targeting an active learning logic for more accurate in-band analysis. We implement HALIDS using the open source software switch BMv2, and show its operation with real traffic traces publicly available.
OriginalspracheEnglisch
Titel2024 8th Network Traffic Measurement and Analysis Conference (TMA)
Seiten1-4
Seitenumfang4
ISBN (elektronisch)978-3-903176-64-5
DOIs
PublikationsstatusVeröffentlicht - 20 Juni 2024
Veranstaltung2024 8th Network Traffic Measurement and Analysis Conference (TMA) - Dresden, Dresden, Deutschland
Dauer: 21 Mai 202424 Mai 2024

Konferenz

Konferenz2024 8th Network Traffic Measurement and Analysis Conference (TMA)
Land/GebietDeutschland
StadtDresden
Zeitraum21/05/2424/05/24

Research Field

  • Multimodal Analytics

Fingerprint

Untersuchen Sie die Forschungsthemen von „HALIDS: a Hardware-Assisted Machine Learning IDS for in-Network Monitoring“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren