Identifying Faulty Traffic Detectors with Floating Car Data

Publikation: Beitrag in Buch oder TagungsbandPosterpräsentation mit Beitrag in TagungsbandBegutachtung

Abstract

Virtually all ITS applications rely on accurate traffic data. Identification of faulty detectors is thus vital for their reliability and efficiency. Most existing approaches solely use current and historical data of single or adjacent detectors and are based on empirical thresholds. We present a method for fault detection using Floating-Car Data (FCD) as independent source of information which allows to distinguish changed traffic conditions from sensor faults. Fault detection is based on residuals of a nonlinear regression model fitted to detector readings and FCD traffic speeds. Instead of applying rule-ofthumb thresholds we employ a statistical test, where thresholds result naturally from historical data, sample sizes and required fault detection accuracy. We provide a theoretical framework for fault detectability analysis and empirically evaluate the fault detection capability of our approach using data obtained from a microscopic traffic simulation.
OriginalspracheEnglisch
Titel2011 IEEE Forum on Integrated and Sustainable Transportation Systems (FISTS)
Seiten103-108
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2011
Veranstaltung2011 IEEE Forum on Integrated and Sustainable Transportation Systems (FISTS) -
Dauer: 29 Juni 20111 Juli 2011

Konferenz

Konferenz2011 IEEE Forum on Integrated and Sustainable Transportation Systems (FISTS)
Zeitraum29/06/111/07/11

Research Field

  • Ehemaliges Research Field - Mobility Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „Identifying Faulty Traffic Detectors with Floating Car Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren