IESopt: A Modular Framework for High-Performance Energy System Optimization

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

urrent climatic, political, and societal challenges pose increasingly complex questions, which in turn require comprehensive models of the real world, with rapidly growing complexity, to support decision makers with sound and reliable
quantitative analyses. The energy system optimization framework IESopt may constitute one piece in filling this gap, by offering a modular and adaptable tool for modelers, that does not compromise on performance while still being user-friendly. This is enabled by reducing energy system assets to abstract building
blocks, that are supported by specialized implementation, and can be combined into complex systems without the need of a detailed understanding of mathematical modeling or proficiency in any coding-language. IESopt’s architecture and functionalities are laid out here, and demonstrated by the means of an illustrative example
OriginalspracheEnglisch
Titel2024 Open Source Modelling and Simulation of Energy Systems (OSMSES)
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 16 Sept. 2024
Veranstaltung2024 Open Source Modelling and Simulation of Energy Systems (OSMSES) - OVE Austrian Electrotechnical Association, Vienna, Österreich
Dauer: 3 Sept. 20244 Sept. 2024
https://www.osmses2024.org/osmses-2024

Konferenz

Konferenz2024 Open Source Modelling and Simulation of Energy Systems (OSMSES)
KurztitelOSMSES 2024
Land/GebietÖsterreich
StadtVienna
Zeitraum3/09/244/09/24
Internetadresse

Research Field

  • Flexibility and Business Models
  • Energy Scenarios & System Planning

Fingerprint

Untersuchen Sie die Forschungsthemen von „IESopt: A Modular Framework for High-Performance Energy System Optimization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren