Industry Paper: Surrogate Models for Testing Analog Designs under Limited Budget - A Bandgap Case Study

Roderick Bloem, Alberto Larrauri, Roland Lengfeldner, Cristinel Mateis, Dejan Nickovic, Bjorn Ziegler

Publikation: Beitrag in Buch oder TagungsbandBuchkapitelBegutachtung

Abstract

Testing analog integrated circuit (IC) designs is notoriously hard. Simulating tens of milliseconds from an accurate transistor level model of a complex analog design can take up to two weeks of computation. Therefore, the number of tests that can be executed during the late development stage of an analog IC can be very limited. We leverage the recent advancements in machine learning (ML) and propose two techniques, artificial neural networks (ANN) and Gaussian processes, to learn a surrogate model from an existing test suite. We then explore the surrogate model with Bayesian optimization to guide the generation of additional tests. We use an industrial bandgap case study to evaluate the two approaches and demonstrate the virtue of Bayesian optimization in efficiently generating complementary tests with constrained effort.
OriginalspracheEnglisch
TitelProceedings - 2022 International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten21-24
Seitenumfang4
ISBN (Print)9781665472944
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS) -
Dauer: 7 Okt. 202214 Okt. 2022

Publikationsreihe

NameProceedings - 2022 International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2022

Konferenz

Konferenz2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)
Zeitraum7/10/2214/10/22

Research Field

  • Dependable Systems Engineering

Fingerprint

Untersuchen Sie die Forschungsthemen von „Industry Paper: Surrogate Models for Testing Analog Designs under Limited Budget - A Bandgap Case Study“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren