Inferring land use from mobile phone activity

Jameson Toole (Vortragende:r), Michael Ulm, Dietmar Bauer, Marta Gonzalez

    Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

    Abstract

    Understanding the spatiotemporal distribution of people within a city is crucial to many planning applications. To obtain the data for creating the required knowledge, currently costly survey methods are conducted. At the same time ubiquitous mobile sensors from personal GPS devices to mobile phones are collecting massive amounts of data on urban systems. The locations, communications, and activities of millions of people are recorded and stored by new information technologies. This work utilizes novel dynamic data, generated by mobile phone users, to measure spatiotemporal changes in population. In the process, we identify the relationship between land use and dynamic population over the course of a typical week. A machine learning classification algorithm is used to identify clusters of locations with similar zoned uses and mobile phone activity patterns. It is shown that the mobile phone data is capable of delivering useful information on actual land use that supplements zoning regulations.
    OriginalspracheEnglisch
    TitelProceedings of the ACM SIGKDD International Workshop on Urban Computing
    Seitenumfang8
    DOIs
    PublikationsstatusVeröffentlicht - 2012
    VeranstaltungACM SIGKDD International Workshop on Urban Computing (UrbComp 2012) -
    Dauer: 12 Aug. 2012 → …

    Konferenz

    KonferenzACM SIGKDD International Workshop on Urban Computing (UrbComp 2012)
    Zeitraum12/08/12 → …

    Research Field

    • Ehemaliges Research Field - Mobility Systems

    Fingerprint

    Untersuchen Sie die Forschungsthemen von „Inferring land use from mobile phone activity“. Zusammen bilden sie einen einzigartigen Fingerprint.

    Diese Publikation zitieren