Language-driven Grasp Detection with Mask-guided Attention

Tuan Van Vo, Minh Nhat Vu, Baoru Huang, An Vuong, Ngan Le, Thieu Vo, Anh Nguyen

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Grasp detection is an essential task in robotics with various industrial applications. However, traditional methods often struggle with occlusions and do not utilize language for grasping. Incorporating natural language into grasp detection remains a challenging task and largely unexplored. To address this gap, we propose a new method for language-driven grasp detection with mask-guided attention by utilizing the transformer attention mechanism with semantic segmentation features. Our approach integrates visual data, segmentation mask features, and natural language instructions, significantly improving grasp detection accuracy. Our work introduces a new framework for language-driven grasp detection, paving the way for language-driven robotic applications. Intensive experiments show that our method outperforms other recent baselines by a clear margin, with a 10.0% success score improvement. We further validate our method in real-world robotic experiments, confirming the effectiveness of our approach.
OriginalspracheEnglisch
TitelProceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Seiten7492-7498
DOIs
PublikationsstatusVeröffentlicht - 25 Dez. 2024
Veranstaltung2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) - Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 14 Okt. 202418 Okt. 2024

Konferenz

Konferenz2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Land/GebietVereinigte Arabische Emirate
StadtAbu Dhabi
Zeitraum14/10/2418/10/24

Research Field

  • Complex Dynamical Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „Language-driven Grasp Detection with Mask-guided Attention“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren