Language-guided Manipulator Motion Planning with Bounded Task Space

Thies Oelerich, Christian Hartl-Nesic, Andreas Kugi

Publikation: Beitrag in Buch oder TagungsbandVortrag mit Beitrag in TagungsbandBegutachtung

Abstract

Language-based robot control is a powerful and versatile method to control a robot manipulator where large language models (LLMs) are used to reason about the environment. However, the generated robot motions by these controllers often lack safety and performance, resulting in jerky movements. In this work, a novel modular framework for zero-shot motion planning for manipulation tasks is developed. The modular components do not require any motion-planning-specific training. An LLM is combined with a vision model to create Python code that interacts with a novel path planner, which creates a piecewise linear reference path with bounds around the path that ensure safety. An optimization-based planner, the BoundMPC framework [1], is utilized to execute optimal, safe, and collision-free trajectories along the reference path. The effectiveness of the approach is shown on various everyday manipulation tasks in simulation and experiment, shown in the video at www.acin.tuwien.ac.at/42d2.
OriginalspracheEnglisch
TitelProceedings of the 8th Conference on Robot Learning (CoRL)
Seitenumfang31
PublikationsstatusVeröffentlicht - 6 Sept. 2024
Veranstaltung8th Annual Conference on robot Learning - Munich, Deutschland
Dauer: 6 Nov. 20249 Nov. 2024

Konferenz

Konferenz8th Annual Conference on robot Learning
KurztitelCoRL 2024
Land/GebietDeutschland
StadtMunich
Zeitraum6/11/249/11/24

Research Field

  • Complex Dynamical Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „Language-guided Manipulator Motion Planning with Bounded Task Space“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren