Learning Tubes

Michael Ulm (Vortragende:r), Norbert Brändle

Publikation: Beitrag in Buch oder TagungsbandBeitrag in Tagungsband mit PosterpräsentationBegutachtung

Abstract

We present a new method for analyzing data mani- folds based on Weyls Tube Theorem. The coefficients of the tube polynomial for a manifold provide geometric information such as the volume of the manifold or its Euler characteristic, thus providing bounds on the geometric nature of the manifold.We present an algorithm estimating the coefficients of the tube polynomial for a given manifold and demonstrate the features of our algorithm on artificial data sets. We apply the algorithm on a real-world traffic data set to determine the number and properties of clusters. We furthermore demonstrate that our algorithm can be used to determine image coverage of an object, giving hints on where a manifold is not sufficiently sampled.
OriginalspracheEnglisch
TitelProceedings 23rd International Conference on Pattern Recognition
Seitenumfang6
PublikationsstatusVeröffentlicht - 2016
Veranstaltung23rd International Conference on Pattern Recognition (ICPR2016) -
Dauer: 4 Dez. 20168 Dez. 2016

Konferenz

Konferenz23rd International Conference on Pattern Recognition (ICPR2016)
Zeitraum4/12/168/12/16

Research Field

  • Ehemaliges Research Field - Mobility Systems

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning Tubes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Diese Publikation zitieren